2024年,GenAI正站在产业化的前夕。
在不久前的2024世界人工智能大会(WAIC 2024)上,AI巨头们对行业发展形成了共识:从卷模型转向卷应用生态。因此,国产大模型普遍降价,随之而来的是调用量的大幅增长。
这反映出在没有大模型使用成本的顾虑后,企业对大模型应用的海量真实需求涌现。IDC预测,2023-2027年,全球企业在GenAI解决方案支出复合年增长率为73.3%,这项支出包括GenAI软件以及相关基础设施硬件和IT/商业服务。
企业含AI量有望持续上升,也意味着AI应用的创客时代正在到来,传统软件服务领域存在广阔替代空间。
因此,国内各大软件厂商开始积极拥抱AI+。比如,据松果财经了解,继推出Smartbi对话式分析大模型版本后,国内知名BI品牌思迈特软件在8月即将发布基于智能体(AI Agent)开发的新一代AI应用Smartbi AIChat。
这说明产业AI化进度条不断向前,BI产品正由+AI一步步迭代为AI原生应用。问题是,这一进程意味着什么?智能体BI将在AI时代扮演什么样的角色?
从对话式分析BI到智能体BI AI产业化下的数字弄潮儿
所谓智能,就是用智慧解决问题的能力。AI产业化的关键,在于创造显著的业务效果,并产生更多效益。
近日,SAS与Coleman Parkes Research在关于生成式人工智能的深度应用调查报告中指出,中国在生成式人工智能的应用方面处于世界领先地位,但使用率更高并不一定意味着实施效果更好或回报更高。例如,24%的美国机构已全面实施了GenAI,而中国这一比例仅为19%。为了最大限度地提高生产力,GenAI必须无缝嵌入业务流程和系统。
数据来源:SAS,Coleman Parkes Research;图:财联社
问题是,AI应用如何嵌入企业业务中,成为提高生产力的工具?
对此,松果财经认为,AI+BI是最有效的途径之一。
数据是继土地、劳动力、资本、技术四大生产要素之后的第五大生产要素。从数据二十条到数据要素×三年行动,近年来国家战略布局,推动数据要素自上而下加速发展,数据要素高水平应用将成为企业竞争力的一部分。
BI则是综合的数据分析工具。从产业、科技大方向上看,基于GenAI升级BI,提升企业数据要素应用能力的价值逐渐被验证。
首先,AI+BI可以降低企业数字化门槛。
在过去,这要求分析工具使用者具备统计学、编程能力等基本功,又拥有充足的业务知识。而今年初思迈特推出了Smartbi对话式分析大模型版本,业务人员可以直接像聊天一样通过简单的对话问答让AI进行智能数据解析,实现了数据分析零门槛。
同时,AI+BI也直接产生了更多业务价值。据了解,通过Smartbi构建内部的业财一体化系统,思迈特实现了降本增效,收入大幅增长,同时也收获了行业第一的市场份额增长。
以此来看,AI+成功推动了BI产品的业务价值升维,加速了数据要素生产力深层次的变革。在这种积极反馈下,BI厂商必然会持续探索AI应用,而AI行业的最显著的新趋势是,智能体(AI Agent)热潮到来。
去年底,比尔盖茨发文指出,AI Agent将彻底改变人机交互、颠覆软件行业。WAIC 2024上,国内AI头部公司认为智能体正在加速部署。IDC一项调研也发现,所有企业都认为AI Agent是AIGC发展的确定性方向;同时,50%企业已经在某项工作进行了试点(调研对象:100家制造、医疗、互联网、金融、零售行业年收入超过5亿的大型企业)。
毫无疑问,智能体正在成为AI应用的主流形式。而作为数据分析核心工具的BI,是智能体落地的重要方向之一。因为如何高效利用数字经济时代的石油正在成为企业发展的关键命题,而推动数据在不同场景中发挥出千姿百态的乘数效应,需要更好的挖掘工具。
那么,在经历多年AI+BI实践后,AI应用厂商基于智能体开发的下一代BI,能否帮助企业更好地释放数据价值?
打造超级能干的应用——技术进步与业务积累驱动供给侧创新
尽管如今的数字化工具广泛接入了大模型,诞生了Smartbi对话式分析大模型版本这样的新一代BI产品,但是市场上缺少具有颠覆性意义的AI原生应用,AI+对大部分传统产业的影响仍然有限。
对此,国联证券在AI应用专题中指出,B端应用在专业程度越高、工作流程越复杂、数据壁垒越高、容错率越低的领域落地越难。AI应用百花齐放,静待杀手级别应用。
图源:国联证券
企业数字化转型的强烈需求孕育着GenAI落地的沃土。从思迈特的发展来看,国内一直帮助企业做数字化的企业,已经敏锐捕捉到了千行百业对AI不断增长的需求,遂向着AI应用厂商战略升级。不过,行业爆发尚欠东风。
对于AI产业化的拐点,不少业内人士认为,需要诞生新的Super APP,它不是以DAU论英雄的超级应用,而是超级能干的应用。能干不仅意味着能干更多活,更代表着AI应用可以处理更复杂的工作。
具体到AI+BI领域,BI应该从更多维度、更灵活地释放数据价值。而智能体+BI的产品重塑,有望成为实现这一目标的方式。
从Smartbi AlChat来看,新一代智能BI平台在灵活性、可玩性、扩展性以及泛化能力等方面具备显著优势。
比如,基于LLM + Al Agent,智能BI平台满足描述性、诊断性、预测性、指示性分析扩展能力,支持开放式问题回答;Smartbi AIChat计算能力分层更灵活,一部分数据量大的统计,充分利用Smartbi己有的指标模型的计算能力,而另一部分复杂计算,则通过Python在库外执行计算;此外,在Smartbi指标模型和数据模型的基础上,企业客户可以实现私有化数据和亿级数据访问。
上述特性使Smartbi AIChat具备更强的能力,从而在更多应用场景中发挥重要作用。我们以销售分析这一典型场景为例,此场景中,基于LLM的深度学习能力下,Smartbi AIChat以智能问数、多轮对话的本事赋能用户,业务人员可以通过与AI聊天,快速查询各个时间段内的销售额、订单量等数据,了解销售趋势和业绩变化。
基于此,我们还可以展开更多的想象,智能体BI能够持续跟踪对话的进展,意味着Smartbi AIChat每一次回复都能精准地反映用户意图和之前的对话内容。这一特性让使用者更像是拥有一个精通数据分析的助理,满足了多样化的需求。
这些场景展望透露出,AI上与数据聊天将成BI使用新范式,Smartbi AlChat更像是每个使用者的AI助理,帮助用户获得过去未有的数据分析能力,从而处理更多业务场景和复杂任务。
那么,思迈特是如何打造出这样一款超级能干应用的?
对此,我们认为,从数字经济发展的大视角看,BI行业AI原生的、更好的产品,是在市场需求驱动、技术进步与产业积累之下诞生的。
一方面,AI产业化和产业AI化的市场前景吸引着所有AI应用厂商。
今年以来,各地人工智能产业发展的政策密集出台,推动当地AI应用厂商加强智能软件研发创新,拓宽智能软件应用广度。对此,中泰证券在《产业复盘与未来推演:AI应用:追本溯源之后,我们相信什么?》中指出,AIGC应用空间将迎爆发期,2030年AIGC市场规模有望超万亿。
另一方面,AI应用厂商的人工智能+探索逐渐进入深水区,头部厂商具备了打造颠覆性应用的实力。
以思迈特为例,公司自2019年开始将自然语言分析(NLA)技术与BI结合,迈入智能BI时代,在AI+BI领域有着多年技术沉淀。同时,伴随企业数字化进程,思迈特积累了5000+行业头部客户经验,产品广泛应用于金融、央国企、制造、医疗、教育等众多行业,具备创新的基础。
在行业+场景know-how赋能下,Smartbi AIChat将为处于数字商业生态不同领域的人带来更全面的帮助,在BI数据分析全链路发挥更大作用。
总之,多重因素汇聚成一股创新力量——智能体的兴起为数字化工具创新奠定坚实基础,而市场前景的诱惑和企业自身业务沉淀则成为供给侧创新的动力。
以思迈特为代表的AI应用厂商,正在成为打造黑天鹅杀手级应用的潜力股。
结语
随着AI产业化应用加速,科技公司在涛涛磅礴的时代浪潮中不断前行,如何重塑应用生态,基于GenAI谋智变已成必答题。
思迈特在经历了对话式分析大模型版本的探索后,即将推出基于AI Agent的Smartbi AIChat。
新一代BI产品能否像奥林匹克博物馆石墙上奥林匹克精神一样——citius(更快)、altius(更高)、fortius(更强),成为AI产业化期待已久的超级应用?让我们拭目以待。
来源:松果财经
看完觉得写得好的,不防打赏一元,以支持蓝海情报网揭秘更多好的项目。